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Abstract 

Damping treatments are used in most Naval platforms to reduce noise and vibration, and are 
therefore critical to structural acoustic performance. However, the complexity of naval structures 
often limits one's ability to accurately estimate the structural acoustic performance of a given 
damping treatment. As a result, some damping treatments represent a significant cost without a 
significant benefit. Costs include initial material and labor as well as routine maintenance that 
involves the replacement of treatments due to inspection of the underlying structure (see MIL- 
STD-2148). The importance of this research lies in the possibility of identifying which damping 
treatments may be permanently removed or never installed without sacrificing substantial perfor- 
mance, thus significantly reducing the cost of naval platforms. The research has achieved this by 
developing a set of processing techniques for experimental data and structural acoustic models. 
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Chapter 1 

Project Overview 

The goal of this project has been to investigate the effects of damping treatment on complex 
structures. This work resulted in the following accmplishments, which are detailed in the following 
chapters: 

Application of the Ritz Method to optimization of vibrating structures This work showed 
how damping may be optimally placed to reduce vibration levels. The key contribution here 
was the discovery of efficient numerical models for evaluating cost functions, which enabled 
exhaustive searches over design combinations. 

Optimizing the spatial distribution of damping in structures with boundary damping 
This work investigated the effect of boundary damping on the optimization of damping place- 
ment. It produced analytical and numerical results that illustrated the importance of incor- 
porating boundary damping in models used for optimization. 

Thermal imaging techniques for evaluation of vibrational damping The recent availabil- 
ity of thermal video cameras with resolutions of approximately 0.025° C prompted an in- 
vestigation to see if this technology could be used to detect damping in situ by measuring 
temperature increases caused by heating of the damping material. This work defined param- 
eter ranges over which the approach would be accurate. 

1.1 Technology transfer 

The principal investigator met frequently with engineers at Carderock, Electric Boat and Newport 
News to share results of the research. I August of 2011, he was invited by Admiral Kirkland 
Donald to participate in a trip aboard the USS Toledoa (See Figure 1.2), which provided a unique 
opportunity to discuss the research with the Navy, but more importantly to better understand the 
technology needs of the fleet. 

1.2 Project participants 

The project included contributions from the following participants 

• Professor J. Gregory McDaniel 



Figure 1.1:   Principal Investigator, Professor J. Gregory McDaniel, preparing to board the USS 
Toledo in August of 2011. 

• Kyle Bridgeo, MS student currently with structural dynamics group at Boeing 

• Hande Özturk, MS student currently in PhD program at Columbia University 

• Thom Howe, undergraduate student currently at Boston University 

• Sarah Provencher, undergraduate student currently at Boston University 

1.3    Summary of publications and presentations 

The following are conference presentations with refereed abstracts: 

• "Application of time windowing to spatial maps of damping," Hande Ozturk and J. Gregory 
McDaniel. Abstract published in the Journal of the Acoustical Society of America, Vol. 27, 
No. 3, pp. 1888-1889, March 2010. Presented at the 159th ASA Meeting/NOISE-CON 2010, 
Baltimore, Maryland, April 21, 2010. 

• "Spatial mapping of modal damping in vibrating plates," Hande Ozturk and J. Gregory 
McDaniel, presented at the 158th Meeting of the Acoustical Society of America, San Antonio, 
Texas October 28, 2009. 

• "Spatial maps of modal damping from frequency response measurements. J. Gregory Mc- 
Daniel, Craig Boucher, and Hande Ozturk, presented at the 157th Meeting of the Acoustical 
Society of America, Portland, Oregon, May 19, 2009. 

The following are invited lectures with refereed papers: 

1. "Application of the Ritz Method to the Optimization of vibrating structures," J. Gregory 
McDaniel and Andrew S. Wixom, Proceedings of Internoise 2012/ASME NCAD meeting 
August 19-22, 2012, New York City, NY, USA, Paper IN12-1211. 



Figure 1.2:   Principal Investigator, Professor J. Gregory McDaniel, preparing to board the USS 
Toledo in August of 2011. 

2. "Optimizing the spatial distribution of damping in structures with boundary damping," J. 
Gregory McDaniel and Andrew S. Wixom, Proceedings of Internoise 2012/ASME NCAD 
meeting August 19-22, 2012, New York City, NY, USA, Paper IN12-1206. 

The following is an MS Thesis: The Use of Thermal Imaging Techniques for Evaluation of 
Constrained Layer Treatments for Vibrational Damping, Kyle Robert Bridgeo, Department of Me- 
chanical Engineering, Boston University, 2009. 



Chapter 2 

Application of the Ritz Method to the 
optimization of vibrating structures 

2.1    Introduction 

This work presents an application of the Ritz Method to the optimization of vibrating structures. 
The optimization problems considered here involve local design choices made in various regions 
of the structure in hopes of improving the vibration characteristics of the structure. In order to 
find the global optimum, one must perform an exhaustive search over all combinations of such 
choices. Even a modest number of design choices may give rise to a large number of combinations, 
so that an exhaustive search becomes computationally intensive. In the present work , the Ritz 
Method is employed to efficiently compute cost functions related to the vibration characteristics of 
the structure. Since the Ritz Method is based on integral expressions of the potential and kinetic 
energies of the structure, one may naturally divide these integrals over regions of the structure. 
In doing so, the concept of substructuring appears naturally in the formulation without explicitly 
considering boundary conditions between regions. This advantage, combined with the well-known 
convergence properties of the Ritz Method, provide for a computationally efficient approach for op- 
timization problems. Numerical examples related to the optimization of a vibrating plate illustrate 
the approach. 

In many applications, one wishes to design a vibrating structure in order to produce desired 
vibrational characteristics. For example, one may wish to design a vibrating plate to either minimize 
or maximize the amount of sound radiated by the plate. The present work addresses situations 
where the designer has the opportunity to introduce a number of design modifications that involve 
local modifications to the structure and, due to cost and complexity, may only choose a subset of 
these modifications. Therefore, one is faced with the question of which combination of modifications 
should be chosen to minimize a cost function related to vibration, acoustic radiation, or both. The 
present work proposes a method to find the optimal set of design modifications that minimize a 
cost function. The method involves an exhaustive search of all combinations and uses the Ritz 
Method as a computationally efficient means of computing the cost function for each combination. 
A significant advantage of this approach over others is the guarantee that a global minimum in 
the cost function has been found. For clarity, the present work focuses on the optimization of a 
vibrating plate, however the approach is by no means limited to this case. 

Much work has been done on the optimization of vibrating structures by varying their topology 
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and material properties. For example, Maeda et al [2] employed a topology optimization approach in 
concert with a finite element representation of the structure. This approach found the distribution 
of material properties that minimized a cost function involving the eigenvalues of the structure. 
Recently, Shu et al [3] presented an approach for structural topology optimization using level set 
method to minimize the frequency response of the structure. Heidari et al [4] presented a method 
to minimize the peak power input to a truss by varying the cross-sectional areas of the truss 
elements while keeping the total mass of the truss constant. The optimization was formulated as a 
semidefinite programming problem. 

Others have investigated the optimization of vibrating structures by applying patches of damp- 
ing treatment. Alvelid [5] presented an approach for finding optimal locations and shapes of con- 
strained layer damping treatments in order to minimize the frequency-averaged response of a vi- 
brating plate. This work used the modified gradient method and successively added patches of 
treatment. Zheng et al [6] compared several optimization algorithms for positioning constrained 
layer damping treatments in order to reduce the response of the odd-numbered vibrational modes 
that contribute most to the acoustic radiation of the plate. The present work is most similar to the 
works of Alvelid and Zheng in that it is concerned with partially treated plates, but differs in one 
important aspect. The present work performs an exhaustive search on all combinations of damping 
placement and therefore finds the global minimum in the associated cost function. 

2.2    Ritz Method 

The Ritz Method was first published in 1909 [7] and is based on Hamilton's Principle [8, 9]. 
Applications of the method to the vibrations of beams and bars are given by Ginsberg [10] and 
Rao [11]. Since the present work involves a vibrating plate in flexure, the Ritz Method is presented 
here for that case. The kinetic and potential energies of the plate having lateral dimensions (o, 6) 
are 

1   rb fa fdw\2 

T   =    -J   J   p(x,y)h(x,y){ — )   dxdy, (2.1) 

* = ijfiW(£+£?V <2-2) 

(
      V)   dx2 dy2      \dxdy) 

dx2      dy2 

dxdy, (2.3) 

where h(x, y) is the thickness and p(x, y) is the mass density. The bending ridigity is D(x, y) — 
E(x, y)h3(x, y)/[12(l — v(x, y)2)} where E is the Young's modulus and v is the Poisson's ratio. The 
Ritz Method approximates the displacement as 

N 

w(x,», t) « 5^qn(t)4>n{x,y,), (2.4) 
n=l 

where the qn{t) are generalized coordinates and the <f>n(x,y) are admissible functions that satisfy 
the geometric boundary conditions. Substitution of this expression into the kinetic and potential 



energy expressions yields the quadratic sums 

1    N    N 
T    =    2EEM^m(t)9nW, (2-5) 

m=ln=l 

1     N     N 

m=ln=l 

where the elements of the mass and stiffness matrices are 
rb    ra 

Mmn   =    /    /   p(x,y)h(x,y)<j>m(x,y)<j>n(x,y)dxdy, (2.7) 
Jo Jo 

rb   pa 
Kmn   = D(x,y)kmn(x,y)dxdy, (2.8) 

Jo Jo 

and where 

.{d^m&tn       d2</>mo20n\ 

The Lagrangian is 
C = T-V (2.11) 

and obeys the Euler-Lagrange equation, 

d fdC\      dC      _ ,iN .„,„. 
s(*r)-äs=«»(') <212> 

where Qn(*) is the generalized force found by writing the work due to nonconservative forces, 

N 

5Wnc(t) = Y,Q"W6QnW (2-13) 
n=l 

The matrix equation of motion is therefore 

Mq + Kq = Q. (2.14) 

2.3    Formulation for Optimization 

Consider that the plate is divided into regions that are assumed to be homogeneous. The prop- 
erties may, however, change from region to region so that the entire plate is considered to be 
nonhomogeneous. The mass and stiffness matrices may then be expressed as sums over regions, 

P 

M = ^Mp (2.15) 
p-l 

K = £KP (2.16) 



where the mass and stiffness matrix for each region is 

(Mp)mn    =    pPhPJJ     <t>m{x,y)4>n{x,y)dA (2.17) 

(Kp)mn   =   DPJJ  kmn(x,y)dA, (2.18) 

and where Rp is the area occupied by region p. Note that the integrals in the above expressions 
are independent of the region properties. These means that the integrals may be computed and 
stored, so that the regional mass and stiffness matrices may be rapidly computed for a given choice 
of pphp and Dp. Also note that the dimensions of Mp and Kp are N x N regardless of the size 
of the region. Therefore, the regional mass and stiffness matrices may simply be added together 
once choices for pphp and Dp have been made for all regions. This observation is the heart of the 
method. The parameters pphp and Dp for the regions are regarded as optimization parameters and 
the global mass and stiffness matrices are rapidly once these parameters are chosen. 

The optimization of the plate proceeds by defining a suitable cost function related to the plate 
vibration. First consider free vibration characteristics in which Q = 0 in Eqn. 2.14. Seeking 
solutions of the form q = Re {qexp(io;f)} gives the eigenvalue problem 

(-w2M + K)q = 0. (2.19) 

Material damping is included by allowing the Young's modulus to become complex-valued, so that 
Ep —>• Ep(l+ir]p) where rjp is the material loss factor of the pth. region. Then the nth complex-valued 
eigenvalue is satisfying Eqn. 2.19 is written as 

a,2 = ft3 (1 + ir]n), (2.20) 

where r?„ is the modal loss factor. One cost function is to identify all of the modes in a particular 
frequency band and attempt to maximize the average modal loss factor, so that the cost function 
would be 

(2.21) 

where wmin < flj < cjmax- 
If the forcing is a known time-harmonic force given by 

Q(t) = Re { Q exp(iw<)} , (2.22) 

then the steady-state solution is written as 

q(t) = Re {qexp(iwi)} , (2.23) 

where the response amplitude is found from Eqn. 2.14, 

q= (-w2M + K)_1Q. (2.24) 

The displacement is written as w(x,y,t) = Re{ü)(x,y)exp(iwf)}, where 

N 

w(x, y) = ^2 Qn<Pn(x, y). (2.25) 
n=l 

10 



One may wish to minimize the root mean square of response over several locations, in which case 
a suitable cost function would be 

1 -£1^,20) |2 (2.26) 
\  J j=l 

fc = 

The cost function above can also be extended to include an average over a specified frequency band. 

2.4    Numerical Examples 

In this section, the approach described above is applied to a rectangular plate with free boundaries. 
These boundary conditions are natural, not geometric, so that the basis functions need not satisfy 
any particular boundary condition. The work by Oosterhout et al [12] has demonstrated that 
Legendre polynomials have desirable numerical properties when used as basis functions in the Ritz 
Method. Therefore, the examples will use the basis functions 

<t>n{x,y) = P3{x)Pk{y), (2.27) 

where 

2x — a 
x   =     (2.28) 

a 

y =  V (2-29) 

and Pn(x) is the nth degree Legendre polynomial. The orthogonality property 

/ 
Pj(x)Pk(x) dx = ^jöjk (2.30) 

is responsible for the desirable numerical properties. 
The aluminum plate considered, which is shown in Figure 2.1 here has lateral dimensions a = 1 

m and b = 0.5 m, thickness h = 1 cm, Young's modulus E = 70 GPa, Poisson's ratio u = 0.3, and 
mass density p — 2700 kg/m3.Natural frequencies of the first four non-rigid-body modes are shown 
in Figure 2.2 and the four modes with the highest natural frequencies below 1000 Hz are shown in 
Figure 2.3, for the case of an undamped plate. 

The plate is divided into 16 regions of equal area having dimensions ap = 0.25 m and bp = 0.125 
m. The optimization problem consists of applying a damping treatment to 25% of the plate, such 
that the material loss factor in that region is assumed to be r)p = 0.1 and the material damping in 
other regions is assumed to be r}p = 0.005. 

kj      fc!(n-fc)!' 

where n is the number of total number of possibilities and A: is the number chosen. For the present 
example, n = 16 and k = 4, so the total number of combinations is 1,820. As a cost function, 
we choose to average the modal loss factors according to (2.21) for modes in the frequency range 
0-1000 Hz (not including rigid-body modes). This average is shown plotted in Figure 2.4.  where 

11 
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1 m 

Figure 2.1: Drawing of elastic plate used in numerical simulations. 

the configurations have been sorted according to average modal loss factor and labelled with integer 
combination numbers. Note that the best design has an average modal loss factor of about 0.35 
and the worst is about 0.25, which is quite a difference considering that both plates have the 
same amounts of damping. Figures 2.5 and 2.6 show the configurations for the highest and lowest 
modal loss factors, which are geometrically very dissimilar. A similar study was performed for 75% 
coverage and those results are shown in Figure 2.7-2.9. 

2.5    Conclusions 

The present work has presented an approach for optimizing vibrating plates by formulating discrete 
design decisions and then exhaustively searching all combinations of those decisions. For a vibrating 
plate, the approach yielded considerably higher performance when the placement of the damping 
was optimized. The approach is quite general in that it allows for any cost function and analysis 
tool. 

12 



(a) / = 52.29 Hz (b) / = 63.20 Hz 

(c) / = 139.5 Hz (d) / = 145.2 Hz 

Figure 2.2: Four lowest non-rigid-body modes of an undamped, rectangular, aluminum plate. 

(a) / = 731.3 Hz (b) / = 827.9 Hz 

(c) / = 838.6 Hz (d) / = 845.7 Hz 

Figure 2.3: Four highest modes of an undamped, rectangular, aluminum plate less than 1000 Hz. 
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0.024 
1000 

Combination Number 
2000 

Figure 2.4:  Plot of the average modal loss factor for natural frequencies less than 1000 Hz as a 
function of configuration number for 25% coverage. 

14 



Figure 2.5: Locations of damping treatment for best average modal loss factor. 

Figure 2.6: Locations of damping treatment for worst average modal loss factor. 
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0.074 
1000 

Combination Number 
2000 

Figure 2.7:   Plot of the average modal loss factor for natural frequencies less than 1000 Hz as a 
function of configuration number for 75% coverage. 
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Figure 2.8: Locations of damping treatment for best average modal loss factor. 

Figure 2.9: Locations of damping treatment for worst average modal loss factor. 
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Chapter 3 

Optimizing the spatial distribution of 
damping in structures with boundary 
damping 

3.1 Introduction 

The present work seeks to optimize the spatial distribution of damping in structures with bound- 
ary damping. This work is motivated by design considerations, such as weight and cost, that often 
limit the amount of damping that can be used. In such cases, the designer must choose the spatial 
distribution of damping in order to reduce the structural vibration. One intuitively expects that 
the presence of boundary damping affects the optimal distribution of damping in the structure. In 
particular, one expects that the optimal design places damping treatments away from such bound- 
aries in order to achieve an even distribution of power flow from the structure. To investigate this 
effect, finite element models of vibrating structures are developed in which the spatial distribution 
of damping is parameterized. These parameters are regarded as optimization parameters that are 
searched to minimize a cost function related to vibration or noise, such as the average response of 
the structure over a frequency band. Examples are presented that illustrate the effect of boundary 
damping on the optimal distribution of damping. 

3.2 Literature Review 

Optimizing the placement of damping on complex structures has received a modest amount of 
attention in the open literature. Perhaps the earliest work is from McQuillin and Kerwin [13, 14], 
which considered a simple example of a flexural wave on a beam or plate with patches of constrained 
layer and free layer damping. In this case, they were able to quantify a 'damping efficiency' 
parameter related to a damping patch. This parameter allowed the damping factor to be expressed 
as the product of a damping efficiency and a partial coverage ratio. Unfortunately, the details of 
that work do not appear to have been published in the open literature. 

Much later, in 1997, Takewaki [15] took a more general approach in optimizing damper place- 
ments to reduce the sum of transfer function amplitudes. Dampers were generally assumed to be 
placed at each degree of freedom and the value of the dashpot constants were chosen as optimization 
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parameters. The cost function was chosen to be the sum of transfer function amplitudes evaluated 
at the undamped natural frequencies. In 2003, Sireteanu and Stoia [16] presented the optimization 
of a nonlinear damping treatment for vehicle suspension. The governing equations of motion were 
solved by a Newmark method and Monte Carlo simulation was used to explore the design space. 

In 2005, Zheng et al [17] presented a very specific study on the layout optimization of damping 
treatments on a cylindrical shell. They used a genetic algorithm to find the optimal layout for 
reducing the structural volume displacement. Optimization parameters were chosen as the location 
and dimensions of each damping patch. They were able to reduce the structural volume displace- 
ment by more than 20 dB by applying partial coverage of a damping treatment to the shell. In 2007, 
Cimellaro [18] expanded the earlier work by Takewaki [15] by considering the simultaneous opti- 
mization of stiffness and damping in building structures with respect to acceleration, displacement, 
and base shear of a tall building structure. 

In 2008, Arajo [19] et al presented an approach for optimizing laminated sandwich composite 
structures from finite element models. The authors proposed the Feasible Arc Interior Point Algo- 
rithm to maximize modal loss factors. One interesting feature of their work is the introduction of 
constraints on the optimization variables, which involved the static faliure criteria of the structure 
as well as the overall mass. The optimization parameters, referred to as "design variables" by the 
authors, were the viscoelastic core thickness, the constraining elastic face laminae thicknesses and 
orientation fiber angles. 

The present work investigates the effect of boundary damping on the optimal placement of 
structural damping. In the following section, the modal strain energy method is used to understand 
how boundary damping affects the optimal placement of additional damping. Next, numerical 
simulations are presented that confirm the intuitive expectation that the optimal placement is 
away from highly damped boundaries. 

3.3    Modal Perspective 

Consider a discrete vibrating system with N degrees of freedom. The Modal Strain Energy Method 
[20, 21, 22] conceptually divides a structure into an undamped portion and a damped portion, where 
the damped portion is assumed to be uniformly damped with a material loss factor %. One then 
defines the undamped eigenvalue problem, 

(-cj2nM + Ku + Kd)(t>n = 0, (3.1) 

where Ku and Kd are the real-valued undamped and damped stiffness matrices, respectively. The 
undamped eigenvectors are assumed orthonormal, 

^M0n = 1. (3.2) 

The damped eigenvalue problem is 

[-Q2
n(l + irjn)M + Ku + (1 + ir,d)Kd] t/>n = 0, (3.3) 

where r]n is the modal loss factor and rjd is the material loss factor of the damped portion. Next, 
one approximates the damped eigenpair by the undamped eigenpair, so that 

n„   w   wn (3.4) 

V>„    «    </>n (3-5) 
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^F 

Inserting these approximations into (3.3) and using (3.1) results in an approximation for the modal 
loss factor, 

9n (Kd + Ku) 0n 

The fraction on the right-hand side is interpreted as the ratio of strain energy in the damped portion 
of the structure.  Note that if all of the strain energy is in the damped portion of the structure, 
then the modal loss factor is the material loss factor. Using Eqn. 3.1, 

„    _, „  4>nKd<l>n ,o 7\ 
Vn « Vd 2  (3-7) 

Now consider a simple case in which the added damping occurs by the connection of a damped 
spring between a degree-of-freedom and ground. In this case, the damped stiffness matrix K^ is 
filled with zeros except for the (a, a) element, where a denotes the degree-of-freedom where the 
spring is attached. Further assuming that the undamped mode shapes are well-approximated by 
neglecting the damped stiffness, then 

[-a£M + Ku]tf>n«0. (3.8) 

This approximation allows one to conceptually move the damped spring to various locations on the 
structure while holding the undamped eigenvector and natural frequency constant. Equation 3.7 
indicates that the modal loss factor would depend on the undamped eigenvector at the location of 
the damped spring, 

,„«%(M(M* (3.9) 

At first glance, this result indicates that optimal placement of damping to maximize modal loss 
factor is independent of boundary location. Without additional assumptions, one cannot know 
whether the ath element of the undamped vector is smaller or larger near a boundary. 

To explore the affect of a damped boundary, let the boundary be simply modeled by the 
connection of an additional damped spring between the 6th degree-of-freedom and ground. Now 
the damped stiffness matrix has an additional nonzero element and Eqn. (3.9) becomes 

.,(^(Kd)aa + (^)g(Kd)6h 
Vn « Vd 2 • (3.1U) 

Fixing the boundary location b and varying the damping location a, it is seen that the optimal 
location is in general different from the optimal location found from (3.9). The addition of boundary 
damping has changed the optimal location for added damping. This observation may be extended 
by optimizing the location of damping by minimizing the average of many loss factors. It may also 
by extending by considering added damping and boundary damping that involves more than one 
degree-of-freedom. 

3.4    Numerical Simulations 

In order to investigate the intuitive expectation that optimal damping placement is away from 
highly damped boundaries, numerical examples are presented here for the case of a serial chain of 
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boundary 
boundary   damping r Xi r X2 

Figure 3.1: Drawing of a portion of the ten degree-of-freedom system. The chain extends to the 
right until the tenth mass is connected to ground by a boundary damping spring, kb, similar to the 
left-hand side. 

oscillators. A schematic of a portion of the system is shown in Figure 3.1. Ten masses are connected 
in a chain by nine springs, which shall be referred to here as interior springs. The masses are chosen 
to be 1 kg each and the springs are random with a uniform distribution of spring constants over 
the interval [0,1] N/m. 

Boundary springs with material loss factors of 77 = 1 connect the end masses, corresponding to 
degrees-of-freedom 1 and 10, to ground with a spring constant of 1 N/m. Damping is added by 
adding three damped springs to three of the ten masses. Each of the damped springs connect a 
mass to ground and have a spring constant of 1 N/m and a loss factor of TJ = 0.1. All combinations 
of ten masses are chosen three at a time, yielding a total of 120 combinations. For each realization, 
the complex eigenvalues are found numerically, without the approximation of the Modal Strain 
Energy Method. The best combination is the combination with the highest modal loss factor. 
Several realizations are analyzed and the results are shown in Figure 3.2. Each circle in the plot 
represents the optimal placement of added damping, so that a horizontal strip corresponds to an 
optimal combination of damping for a fixed realization. Note that the optimal combinations are not 
uniformly distributed but appear to be more concentrated in the middle, away from the boundary 
damping at the left and right hand sides of the plot. 

To investigate this effect further, Fig. 3.3 corresponds to the case where the boundary damping 
at degree-of-freedom 10 (right-hand side of the figure) was removed. This produced an obvious shift 
of the interior damping to the right-hand side of the figure, apparently compensating for the lack of 
damping in this portion of the model. In all realizations, one of the three locations is chosen as the 
far right-hand side where there is no boundary damping. As a final check, the boundary damping 
was removed at both ends and the resulting optimal combinations are shown in Figure 3.4. In this 
figure, the optimal damping combinations are more uniformly spread across the degrees-of-freedom. 

3.5    Conclusions 

In conclusion, this work presented analytical approximations that indicate the importance of bound- 
ary damping when trying to find optimal placement of damping. Numerical simulations, in which 
the connecting springs of a ten degree-of-freedom system were randomly varied, further revealed 
that the optimal placement of damping depends critically on boundary damping. 
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Figure 3.2:  Combinations of optimal damping placement for boundary loss factor r\ = 1 on each 
side and added damping 77 = 0.1 at three locations. 
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Figure 3.3:  Combinations of optimal damping placement for boundary loss factor rj = 1 on only 
the left-hand side and added damping 77 = 0.1 at three locations. 
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Figure 3.4:   Combinations of optimal damping placement for no boundary damping and added 
damping TJ — 0.1 at three locations. 
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Chapter 4 

The use of thermal imaging 
techniques for evaluation of 
constrained layer treatments for 
vibrational damping 

4.1    Introduction 

Constrained layer damping (CLD) treatment systems are widely used in complex structures to 
dissipate vibrational energy. In many applications it is important to understand the relative ef- 
fectiveness between different treatments. Unfortunately, a viable technique for determining this 
effectiveness has yet to be developed. 

This work develops the theoretical basis for determining the effectiveness of CLD treatments 
using thermal imaging technology. Heat generation in CLD treatments is predicted and the asso- 
ciated temperature distribution is modeled in time and space. The effect of materials choice and 
excitation scheme on temperature rise is discussed. With a temperature resolution of 0.025°C, ther- 
mal imaging is presented as a potential in-situ technique for mapping these temperature changes 
in real systems and from this, developing an expression for damping effectiveness. 

Constrained layer damping (CLD) treatments consist of a base layer, or the structure to be 
damped, a viscoelastic layer and a constraining layer. All three layers are adhered together, with 
the viscoelastic layer sandwiched between the base and the constraining layer. When exposed to 
vibration, the viscoelastic layer is strained in a shear mode. The amount of energy removed from 
the vibrating system is proportional to the rate of viscoelastic shear. Because of internal friction 
mechanisms, this shear rate energy is converted to heat and conducted through the system. 

This work attempts to map the heat generation in CLD treatments to gain insight into their 
effectiveness, or relative ability to remove vibrational power from a complex system. This technique 
is framed in the context of thermal imaging, which allows temperature changes on the surface of 
solids to be mapped both spatially and temporally where this temperature rise occurs as a function 
of heat generation within the CLD. Recent literature[23, 24] in the field of thermography has 
placed the limit of temperature sensitivity on thermal cameras at 0.025°C. Recent literature[25] 
investigating the temperature rise in solids while exposed to cyclic stress or vibration environments 
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has shown that temperature changes in excess of 1°C can be achieved. These facts give confidence to 
the potential for detecting a temperature rise in viscoelastic solids by means of a thermal camera. 
This work attempts to not only show the viability of this technique but also explain how the 
effectiveness of a CLD treatment can be tied into it. 

4.2 Motivation 

Understanding the effectiveness of damping becomes important for different reasons in different in- 
dustries. In maritime applications, damping treatments are replaced regularly, leading to increased 
costs when ineffective damping treatments are replaced. In aircraft and spacecraft structures, in- 
effective damping leads to unnecessary weight and thus lower allowances for payload and critical 
systems. Understanding the effectiveness of individual damping treatments could lead to lower 
costs, complexity and system mass in many commercial applications. Unfortunately, with struc- 
tures continuously growing in complexity and size, determining how effective or ineffective damping 
treatments are has becoming increasingly difficult. Analytical schemes become nearly impossible 
to undertake and numerical schemes have difficulty in modeling every mass, damping and stiffness 
element within a real structure thus leading to inaccuracies. This leaves experimental and in-situ 
techniques. The proposed technique would not only give insight to the power dissipation charac- 
teristics of the structural system but is also an in-situ, no destructive testing technique - ideal for 
the applications discussed previously 

4.3 Literature review 

The literature upon which this work is based falls into two general categories. These are constrained 
layer damping (CLD) treatment theory and temperature profiling techniques. As such this literature 
review is broken into sections representative of each of these topics. 

4.3.1    CLD Theory 

The first major developments and the basis for most CLD treatment theory was put forth by E.M. 
Kerwin[26]. His seminal paper explored the damping of sandwich beams in which a viscoelastic 
layer was adhered between two perfectly elastic layers. This paper made many basic assumptions 
allowing for a simple analysis, including: 

1. Considering the beam to be either infinitely long or to be simply supported in its boundary 
conditions while vibrating at a natural frequency 

2. Disallowing slip between adjoining layers in the structure 

3. Elastic plate layers displace transversely by the same amount 

Kerwin [26] showed that the most important mechanism in power dissipation by sandwich beams 
was shear deformation of the viscoelastic layer. His method employed the use of a complex valued 
bending stiffness dependent on a loss factor, 77. This loss factor introduced material loss, due to 
the viscoelastic layer, into the equations of motion for a sandwich beam. This technique stems 
from the Kelvin-Voigt model of viscoelastic solids where the elastic modulus is observed to vary 
with the strain and strain rate of the viscoelastic material.  When the strain is sinusoidal, as in 
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vibration theory, the strain rate introduces the complex i, leading to a complex valued elastic and 
shear modulus and eventually a complex valued bending stiffness. 

Later, DiTaranto [27] furthered this work by developing a sixth order equation of motion for the 
response of sandwich beams. This formulation allowed for the analysis of sandwich beam structures 
of finite length and arbitrary end conditions. As it was a sixth order differential equation of motion, 
six boundary conditions were needed for its solution. Aside from the typical four conditions found 
for a solid beam (two conditions on each end) one more condition for each of the ends was needed 
to define longitudinal constraints and satisfy the sixth order equation. 

While these two papers paved the way for sandwich beam analysis, concurrently, researchers 
were applying sandwich beam theory to thin plate sandwich structures. Ross, Kerwin and Ungar 
[28] were the first to produce this theory. The structures consisted of an elastic base plate, a 
viscoelastic core and and elastic constraining layer, similar to the sandwich beam. This system 
is strongly representative of real CLD treatment systems and as such a proper analysis of it can 
produce response functions that are extremely close to those of a real CLD treatment system. Many 
researchers [29, 30, 31] have been involved in the development of this thin sandwich plate theory. 

One of the most accurate theories to date is the analysis put forth by Rao and Nakra [29]. 
In their work, the response of unsymmetrical, sandwich beams and plates was developed given a 
small number of assumptions. For their unsymmetrical plate theory, the assumptions they made 
follow [29]. 

1. Extensional effects within the viscoelastic material are ignored. 

2. All plane transverse sections of the elastic layers remain plane and normal to the longitudinal 
fibers of the plate layers after bending. 

3. The transverse displacement remains constant throughout the thickness of the plate. 

4. There is perfect continuity of displacement at the interfaces. 

5. All displacements are considered small. 

The only assumption here that may be troubling is the discarding of viscoelastic extensional ef- 
fects. Fortunately, in most cases, shear deformation provides a much stronger power dissipation 
mechanism than that of extension in the viscoelastic cores of CLD treatments[32, 28, 33]. The 
strength of this formulation comes in its accounting for inertia effects. Using a variational method, 
Rao and Nakra were able to account for rotary and longitudinal inertia as opposed to the majority 
of research which focused only on transverse inertia[27, 30, 31, 28]. In doing so a higher order 
approximation for the equations of motion of sandwich plates was established. 

Since the work of Rao and Nakra [29], most sandwich plate vibration theory has focused on 
the finite element technique as applied to sandwich plate structures (see [34],[35]), the analytical 
and numerical solutions to the response of sandwich plate structures with fiber composite base and 
constraining layers (see [36],[37]) as well as the response of sandwich structures more exotic than 
beams and plates. As the work to follow only requires a basis of comparison for plate structures, 
these developments are not detailed and the primary work on which the analysis is based is that 
of Rao and Nakra [29]. 

27 



4.3.2    Temperature Profiling 

Within this work, temperature profiling refers to the establishment of temperature distributions 
through structures as well as their temporal characteristics. Approaches fall into two general 
categories: experimental and theoretical techniques. Experimentally, this work focuses on thermal 
imaging technology and its capabilities while theoretically this work focuses on the framework and 
solutions required to describe simplified systems using the heat diffusion equation. 

The heat diffusion equation, which describes the temperature of a body and its changes in 
time and space is a partial differential equation and, in principle, difficult to solve when non- 
homogeneous. One of the central models of this work is a system of non-homogeneous heat diffusion 
equations stemming from a heat production term within the CLD viscoelastic layer. Carslaw and 
Jaegar [38] published solutions to similar systems of equations in their comprehensive work on 
heat conduction in solids. While vast amounts of research has been conducted in the field of 
heat diffusion and conduction in the years since this work, Carslaw and Jaegar [38] provided the 
necessary framework for analyzing the temperature distribution through CLD systems. 

The use of thermal imaging cameras is not foreign to the field of modal and vibrational analy- 
sis. E.G. Henneke et.al. [39] coined the term "vibrothermography" to describe a non-destructive 
technique for evaluating damage in structures. From the abstract of this paper, 

Vibrothermography is an NDE technique whereby a structure is excited with me- 
chanical vibrations and the temperature profile on the surface is mapped by real-time 
video thermography. Damage in the structure is frequently more efficient at convert- 
ing the input mechanical energy to heat than are undamaged regions of the structure. 
Hence damage appears on the thermal map as warmer regions. 

Since this work, a number of researchers have developed the field of vibrothermography[40, 41, 23, 
39]. While vibrothermography does not apply directly to the development of CLD temperature 
distributions, its results do. Specifically the results for the work of Audenino et. al.[24]. Here, 
Audenino, et. al., were able to generate large temperature changes in small prepared samples of 
a number of metals. Using a cyclical stress with a magnitude that neared the elastic limit of the 
sample, temperature changes on the order of 100°C were noted. This temperature is well within the 
range of thermal imaging cameras at a stress magnitude within the material's linear elastic regime. 
Audenino et. al. [42] also made use of a thermal imaging system with a temperature resolution of 
0.025°C. The availability of cameras with this sort of resolution would allow for even the smallest 
of temperature changes within a CLD treatment to be detected and quantified. These figures not 
only provided confidence in the abilities of thermal imaging but also provided a motivation for this 
work. 

Outside of the developments of vibrothermography, research in the field of civil engineering has 
led the characterization of temperature rise in viscoelastic damping materials. Lai et. al. [25], 
developed an expression for the temperature rise in a viscoelastic material using a representation 
of shear stress integrated over time assuming no heat conduction to a host structure. The purpose 
of this work was to predict the effect of temperature rise on the properties of viscoelastic materials 
at high shear strain levels ("125%). Their results, along with the finite element results utilizing 
a similar analysis which included heat conduction and convection in the work of Lai et. al. [43], 
predicted temperature rises on the order 1-2°C within viscoelastic materials undergoing what they 
considered 'small deflection' excitation. 
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Figure 4.1: A typical sandwich plate system. Coordinate systems and length scales are noted. 
Constraining layer, viscoelastic layer and base layer pertain to the nomenclature used through 
CLD treatment theory. 

4.4    Constrained Layer Damping Analysis 

Formulation 
The primary goal of constrained layer damping analysis as pertaining to this work is in estab- 

lishing the power dissipated by the viscoelastic layer of a sandwich plate system. A typical sandwich 
plate system, and the one referenced throughout this work, can be seen in Figure 4.1. In order to 
establish its power dissipation, first the response characteristics of the system must be understood. 

The following formulation of constrained layer damping treatment response primarily follows the 
work of Rao and Nakra[29]. This work resulted in a series of equations of motion for unsymmetrical 
sandwich plate structures. In accounting for shear deformation as well as rotary, transverse and 
longitudinal inertia effects and allowing for arbitrary boundary conditions, this work provides an 
accurate analytical formulation for CLD systems. The equations of motion they developed are, 

71 |«l + (1 + fl)   '*  ,   (l-«i) -«f + 

p\h\ü\ - P2L 

fhAk'-W 
«1    ,   «3 ..,     \ 

(4.1) 

0   =   7l|vi* + (l + "i) '♦ .  (1-Vi)  »\ ( c    ,     (ui -v3)\ 

pihivi - p2L [ — + — + w e3 I (4.2) 

f  „ ,  (1 + ^3)  >. ,  (l-t/3)   „\ / 
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P3/13Ü3 - P2^ f y + y + **£4 ] (4.4) 
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t2 I.   V / 
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pw + Q(x,y)g(t) (4.5) 

where the bending stiffness of the elastic plates is, 

and, 

7t — T      .2* — 1>") 
i 

h\ + /13 

1-W 

c = L + 

72 = <?% 

£1 = ^, £2 = k£*, £3 = ^, £4 - ^, 

and subscript 1 refers to the base plate, subscript 2 refers to the viscoelastic layer and subscript 
3 refers to the constraining plate. 

These equations of motion can be used to establish the response of a plate with arbitrary 
boundary conditions. However, for simplicity's sake, we wil assume the plate is simpy supported 
on all sides. The generalized forcing function can be written as, 

00    00 

Q(x, y)g(t) =2^1^ ®mn sin sin ~T~S1 ^     ' 
m=ln=l 

where the longitudinal, latitudinal and transverse displacements follow as, 

{;}-££{ Si HT-T8--. <«> v '        m=l n=l  v ' 

{,3) = EE{ y3mn}«—<«—8mwt- (48) 
v
 '        m=l n=l  v y 
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w = Y^ YlWmn sin rmrx  .   nwy  . 
 sin —r— sin U}t, (4.9) 

u u 
m=ln=l 

Given these conditions and the assumptions made previously, the solutions to the equations of 
motion (equations 4.1 through 4.5) for the sandwich plate have been solved as detailed in the work 
of Rao and Nakra [29]. The form of the response used here follows that of Sun et. al. [32]. 

Solution of the equations of motion is achieved by inserting the Fourier series representations of 
the displacements into equations 4.1 through 4.5, and solving the system of equations that develops 
for the complex magnitudes of displacement. This system of equations is, 

dR + id*2           di -df-id^           0 -dR - id[ 
d4            e

R + id\             0 -dR - id{ -ef - ie{ 
' 0 f? + id{         fR -ff + idi 
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~dR - id\ 

U\mn '    0    " 
U^mn 0 
'\mn = 0 
V-Smn 0 
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(4.10) 

Assuming the plate is forced at its center with a harmonic force, the values of the coefficients are, 
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where, 
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the non-dimensional Poisson's ratio for the two eastic plates is, 

V>1,3 = —, 
^3 

the non-dimensional ratio of layer thickness is, 

with fi2 = I. The ratio of layer densities is, 
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Also, 

X        G 

the ratio of side lengths of the plate is, 

the ratio of elastic moduli of the elastic plates is, 

and, 

W = Es' 

a 
Once this set of equations is solved, expressions for the response of the plate are easily found. 

For this analysis, the main concern is the transverse displacement response of the plate. This is 
due to the fact that in finding an expression for the power input to the system, only the transverse 
component of displacement is used. This is discussed later. 

The first concern in using these equations is determining whether or not the plate is vibrating 
within a linear elastic regime. In order to determine this, some constraint must be placed on the 
response. Since these equations assume that the plate is undergoing small amplitude vibrations 
it is difficult to determine when the response moves from linear to non-linear. This is generally 
accomplished by studying the transfer function of the response and increasing the forcing function 
magnitude until the transfer function changes. This indicates that the response no longer varies 
linearly with the input force. Since these equations assume linearity, the transfer function does 
not change no matter how large the magnitude of the input force. Therefore an approximate 
constraint must be established. There are two general methods for doing this: (1) require that 
the maximum strain in the plate remains below a specified level or (2) require that the ratio of 
maximum transverse displacement in the plate to a characteristic length in the plate remains below 
a specified level. Here, linear elastic vibrations are defined to occur when the ratio of maximum 
transverse displacement to the total thickness of the sandwich plate is equal to or less than 0.01. 
Mathematically this means the response of the plate is linear when, 

WMAX < 0.01(hi + I + h3). (4.29) 

Constraining the transverse displacement as opposed to the plate strain to determine the linear 
elastic limit was chosen because of its simplicity to find a limit. Given the compliance transfer 
function (displacement/force) of the plate, Hcomp(w), the input force which elicits the maximum 
linear elastic response of the sandwich plate, FQ MAX, is found as a function of excitation frequency 
by, 

0.01(/H + I + h3) 
F0,MAX = ü 7-T ■ (4.30) 

Now with an understanding of the level to which a structure can be forced and its response thereby 
predicted by equations 4.11 through 4.28, the power dissipated by the structure can be calculated. 
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First, the power input to the system by the force is easily determined. Given that the input is 
harmonic, the complex amplitude of transverse velocity at any point can be determined by, 

V = iww. (4.31) 

Here, the response and input at any location is temporally dependent on a sinusoid(see equations 
4.6 and 4.9). In this case, phase information is contained within the complex amplitude of the 
response. Using these amplitudes, the power transferred to the plate by the excitation system is, 

Pin(cj) = ^Re{FoM • V*(Lü)} (4.32) 

where the star denotes the complex conjugate. Using the formulation established previously, this 
can also be written as, 

PinM = ±Re t.FoM ■ L f) f; Wmn(u>) sin (^) sin (^) j j (4.33) 

Now assuming that the plate is vibrating at steady state, 

Pin = Pont + Pdia, (4.34) 

for this system. We also know that the power out term is equal to zero. At the plate boundaries 
a force may develop but the velocity for a simple support is always equal to zero by definition. 
Without a velocity at its edges, power has no way to transfer out of the sandwich plate. Therefore, 
all power in must be equal to power dissipated. Normalizing for volume of damping material the 
power dissipated by the damping material per unit volume, Ao, is, 

Ao = £sfcl (4.35) 
I ■ a- o 

This is the only term from CLD theory that plays a role in the temperature distribution equations. 
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Figure 4.2: ISD-112 reduced frequency nomogram developed by 3M corporation[l]. 

4.5    Results 

In order to begin to understand the power dissipation characteristics of different materials, a number 
of results were gathered using the analysis from section 4.4. The results to follow represent the 
response and power dissipation data pertinent to this work. 

The materials chosen fall into two basic categories: (1) structural base materials and (2) damp- 
ing material. For the structural base materials, research was conducted into materials commonly 
used for major structural applications. This includes: two grades of aluminum commonly found 
in aircraft structures, one alloy of structural grade titanium, one alloy of steel commonly found in 
maritime and assorted structural applications and two examples of fiberglass commonly found in 
watercraft and maritime structures. While fiberglass is technically a composite material, its prop- 
erties were approximated to be isotropic (namely Poisson's ratio, elastic modulus, specific heat and 
coefficient of thermal conduction) as would approximately be the case for a chopped fiber configu- 
ration. The pertinent properties for all structural materials can be found in Table 4.1 courtesy of 
the MATWEB materials database[44]. 

For the damping material, 3M's ISD-112 polymer damping material was chosen. The reason 
for using this specific damping material was because of the extensive research performed on its 
properties over the past 40 years. ISD-112 has been used in many structural damping applications 
and as such, its loss factor and shear modulus as a function of frequency and temperature are very 
well understood. Figure 4.2 is the nomogram of ISD-112 as provided by 3M corporation. 

This yields six combinations of base and damping material to be analyzed. What follows are 
the results of the CLD analysis utilizing these materials and the theory from section 4.4 as applied 
to these six systems.   In each case the base plate is assumed to be 0.5 cm thick, 1 m long on 
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each side and uniformly damped across its entire face. The constrained layer is assumed to be 1.5 
mm thick 3M ISD-112 with a constraining layer of 1.5 mm thick AISI 1050 steel. The ISD-112 
material is also assumed to be at 75 °F in evaluating material properties. Each combination has 
one figure displaying the driving point mobility transfer function and the driving point compliance 
transfer function as well as one table compiling pertinent results. These tables focus only on the 
power dissipation characteristics of the system while it is being excited at a modal frequency for 
the following reason. At a modal frequency, for a specified harmonic force, the response magnitude 
is always a local maximum. As the applied force magnitude is assumed to be constant for each 
case, only the velocity varies as a function of frequency. As the response is greatest at a modal 
frequency, so is the velocity and thus the power dissipation. For each base material/damping 
material combination and each of its first six modes, the plate is excited with the force that 
produces the maximum linear elastic response at the respective modal frequency. 
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Figure 4.3: Mobility transfer function for first 6 modes of AISI 1050 steel base plate (0.5 cm 
thick) with AISI 1050 steel constraining layer (1.5 mm thick) and ISD-112 constrained layer (1.5 
mm thick). Plate was forced harmonically at center with response measurement taken at forcing 
location. Plate dimensions: 1 m x 1 m. 
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Frequency (Hz) 

Figure 4.4: Compliance transfer function for first 6 modes of AISI 1050 steel base plate (0.5 cm 
thick) with AISI 1050 steel constraining layer (1.5 mm thick) and ISD-112 constrained layer (1.5 
mm thick). Plate was forced harmonically at center with response measurement taken at forcing 
location. Plate dimensions: 1 m x 1 m. 
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Mode Preq [Hz] Modal Loss Factor Hcomp,MAX  nq-J FQMAX [N] PDIS [W] 

1 23 0.1521 2.293 x 10-5 3.49 0.0201 

2 108 0.0417 8.193 x 10-6 9.76 0.2631 

3 193 0.0259 1.937 x 10~6 41.30 1.9897 

4 279 0.0197 2.334 x 10-6 34.28 2.3594 

5 364 0.0165 1.603 x 10~6 49.91 4.4757 

6 534 0.0169 4.489 x 10-7 178.21 23.334 

Table 4.2: Compiled results from Figures 4.3 and 4.4. The following is included for the first six 
modes: modal frequency, modal loss factor, maximum compliance transfer function value, excitation 
force required to bring plate to linear elastic limit and the power dissipation associated with linear 
elastic limit force. 
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Figure 4.5: Mobility transfer function for first 6 modes of aluminum 2024-T6 base plate (0.5 cm 
thick) with AISI 1050 steel constraining layer (1.5 mm thick) and ISD-112 constrained layer (1.5 
mm thick). Plate was forced harmonically at center with response measurement taken at forcing 
location. Plate dimensions: 1 m x 1 m. 
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Figure 4.6: Compliance transfer function for first 6 modes of aluminum 2024-T6 base plate (0.5 cm 
thick) with AISI 1050 steel constraining layer (1.5 mm thick) and ISD-112 constrained layer (1.5 
mm thick). Plate was forced harmonically at center with response measurement taken at forcing 
location. Plate dimensions: 1 m x 1 m. 
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Mode Preq [Hz] Modal Loss Factor Hcomp,MAX 
m 

FQ,MAX [N] PDIS [W] 

1 22 0.3864 2.213 x 10~5 3.62 0.0199 

2 96 0.0938 8.366 x 10~6 9.56 0.2301 

3 169 0.0651 2.085 x 10~6 38.37 1.6260 

4 243 0.0576 2.513 x 10~6 31.83 1.9187 

5 317 0.0442 1.769 x 10~6 45.22 3.3529 

6 465 0.0430 5.409 x 10-7 147.90 13.727 

Table 4.3: Compiled results from Figures 4.5 and 4.6. The following is included for the first six 
modes: modal frequency, modal loss factor, maximum compliance transfer function value, excitation 
force required to bring plate to linear elastic limit and the power dissipation associated with linear 
elastic limit force. 
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Figure 4.7: Mobility transfer function for first 6 modes of aluminum 7075-T6 base plate (0.5 cm 
thick) with AISI 1050 steel constraining layer (1.5 mm thick) and ISD-112 constrained layer (1.5 
mm thick). Plate was forced harmonically at center with response measurement taken at forcing 
location. Plate dimensions: 1 m x 1 m. 
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Figure 4.8: Compliance transfer function for first 6 modes of aluminum 7075-T6 base plate (0.5 cm 
thick) with AISI 1050 steel constraining layer (1.5 mm thick) and ISD-112 constrained layer (1.5 
mm thick). Plate was forced harmonically at center with response measurement taken at forcing 
location. Plate dimensions: 1 m x 1 m. 

Mode Freq [Hz] Modal Loss Factor HComp,MAX   l-fl-l F0,MAX [N] PDIS [W] 

1 22 0.3864 2.209 x 10~5 3.62 0.0200 

2 95 0.1000 8.406 x 10"6 9.52 0.2274 

3 168 0.0625 2.093 x 10-6 38.22 1.6055 

4 241 0.0498 2.527 x 10"6 31.66 1.9045 

5 315 0.0492 1.772 x 10-6 45.15 3.2840 

6 462 0.0433 5.430 x 10~7 147.33 13.285 

Table 4.4: Compiled results from Figures 4.7 and 4.8. The following is included for the first six 
modes: modal frequency, modal loss factor, maximum compliance transfer function value, excitation 
force required to bring plate to linear elastic limit and the power dissipation associated with linear 
elastic limit force. 
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Figure 4.9: Mobility transfer function for first 6 modes of grade 23 titanium base plate (0.5 cm 
thick) with AISI 1050 steel constraining layer (1.5 mm thick) and ISD-112 constrained layer (1.5 
mm thick). Plate was forced harmonically at center with response measurement taken at forcing 
location. Plate dimensions: 1 m x 1 m. 

Mode Freq [Hz] Modal Loss Factor Hcomp,MAX  1^1 FOMAX [N] PDIS [W] 

1 19 0.2826 2.229 x 10-5 3.59 0.0071 

2 99 0.0686 8.266 x 10~6 9.68 0.1234 

3 179 0.0412 2.015 x 10-6 39.70 1.1529 

4 257 0.0344 2.425 x 10-6 32.99 1.0752 

5 337 0.0292 1.671 x 10~6 47.88 2.4456 

6 496 0.0279 4.864 x 10~7 164.47 13.339 

Table 4.5: Compiled results from Figures 4.9 and 4.10. The following is included for the first six 
modes: modal frequency, modal loss factor, maximum compliance transfer function value, excitation 
force required to bring plate to linear elastic limit and the power dissipation associated with linear 
elastic limit force. 
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Figure 4.10: Compliance transfer function for first 6 modes of grade 23 titanium base plate (0.5 cm 
thick) with AISI 1050 steel constraining layer (1.5 mm thick) and ISD-112 constrained layer (1.5 
mm thick). Plate was forced harmonically at center with response measurement taken at forcing 
location. Plate dimensions: 1 m x 1 m. 
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Figure 4.11: Mobility transfer function for first 6 modes of Premix 1203 base plate (0.5 cm thick) 
with AISI 1050 steel constraining layer (1.5 mm thick) and ISD-112 constrained layer (1.5 mm 
thick). Plate was forced harmonically at center with response measurement taken at forcing loca- 
tion. Plate dimensions: 1 m x 1 m. 
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Figure 4.12: Compliance transfer function for first 6 modes of Premix 1203 base plate (0.5 cm 
thick) with AISI 1050 steel constraining layer (1.5 mm thick) and ISD-112 constrained layer (1.5 
mm thick). Plate was forced harmonically at center with response measurement taken at forcing 
location. Plate dimensions: 1 m x 1 m. 
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Mode Freq [Hz] Modal Loss Factor Hcomp,MAX 
m" F0,MAX [N] PDIS [W] 

1 16 Undef 2.140 x 10"5 3.74 0.0131 

2 60 0.2667 8.894 x 10-6 8.99 0.1355 

3 102 0.1667 2.819 x 10-6 28.38 0.7098 

4 143 0.1399 3.269 x 10~6 24.47 0.8624 

5 187 0.1337 2.612 x 10~6 30.63 1.1368 

6 272 0.1434 1.024 x 10-6 78.13 2.8629 

Table 4.6: Compiled results from Figures 4.11 and 4.12. The following is included for the first six 
modes: modal frequency, modal loss factor, maximum compliance transfer function value, excitation 
force required to bring plate to linear elastic limit and the power dissipation associated with linear 
elastic limit force. 
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Figure 4.13: Mobility transfer function for first 6 modes of Premix 7203 base plate (0.5 cm thick) 
with AISI 1050 steel constraining layer (1.5 mm thick) and ISD-112 constrained layer (1.5 mm 
thick). Plate was forced harmonically at center with response measurement taken at forcing loca- 
tion. Plate dimensions: 1 m x 1 m. 
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Figure 4.14: Compliance transfer function for first 6 modes of Premix 7203 base plate (0.5 cm 
thick) with AISI 1050 steel constraining layer (1.5 mm thick) and ISD-112 constrained layer (1.5 
mm thick). Plate was forced harmonically at center with response measurement taken at forcing 
location. Plate dimensions: 1 m x 1 m. 
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Mode Preq [Hz] Modal Loss Factor Hcomp,MAX 
m 

1$. 
FO,MAX [N] PDIS [W] 

1 16 Undef 2.010 x 10~5 3.98 0.0149 

2 60 0.2833 8.891 x 10~6 9.00 0.1358 

3 103 0.1748 2.813 x 10~6 28.44 0.7013 

4 146 0.1370 3.254 x 10~6 24.59 0.8056 

5 190 0.1368 2.602 x 10-6 30.75 0.9715 

6 276 0.1413 1.020 x 10-6 78.43 2.2860 

Table 4.7: Compiled results from Figures 4.13 and 4.14. The following is included for the first six 
modes: modal frequency, modal loss factor, maximum compliance transfer function value, excitation 
force required to bring plate to linear elastic limit and the power dissipation associated with linear 
elastic limit force. 
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4.6    Discussion of Results 

The results acquired in this analysis provide some interesting insight into the response of CLD 
treatment systems. One of the most noticeable results in this analysis is how power dissipation 
rises with the mode number in almost every case. The reason for this can be intuitively determined. 
As mode number increases, it can be seen that, generally, the force required to push the plate to 
its linear elastic limit at a modal frequency also increases. Studying the compliance transfer func- 
tion leads to the conclusion that if force magnitude is held constant while the modal excitation 
frequency is increased, the maximum dispacement follows a decreasing trend. In order to maintain 
the displacement at the plate's linear elastic limit - 1% of the plate's thickness - then force magni- 
tude must instead increase with modal frequency. Studying the mobility transfer function we can 
similarly assume that, as this excitation force increases so does velocity. As expected the power is 
known to vary directly with the product of forcing magnitude and velocity. If the forcing magnitude 
and velocity have increasing trends, then so must the power dissipation. Both the mobility and 
transfer function must be studied in order to observe this relationship. Characterizing the trend 
in power dissipation based only on the mobility or compliance transfer function leads to incorrect 
trends in power dissipation. This increase in power dissipated on a per unit volume basis can be 
seen in Table 4.8. 

Figure 4.8 also allows the comparison of power dissipated per unit volume to be compared 
across the six different systems. The power dissipation terms in individual modes tend to stay on 
the same order of magnitude regardless of base material chosen in the first few modes. As mode 
numbers rise, power dissipation tends to increase with density and elastic modulus of the material. 
This can be seen to be the case with all materials, especially in mode six. Here power dissipation 
is highest in steel (highest density and elastic modulus) and lowest in the fiberglass composites 
(lowest density and elastic modulus) with titanium and the aluminum alloys falling somewhere 
between these other materials, both in material properties and power dissipation terms. Section 
?? of this work presents a unified analysis using these power dissipation terms and a temperature 
profiling analysis to be conducted in section ??. 
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